When Cells Die: Recognition and Management of Tumour Lysis Syndrome (TLS)

Matthew Seftel
October 2017

Disclosures

Research support	Lundbeck, BioCanRx
Employee	-
Consultant	Lundbeck, Janssen, Pfizer
Stockholder	-
Speaker	-
Scientific advisory board	Otsuka, Lundbeck, Amgen, Pfizer, Shire

Successful Supportive Care in Oncology

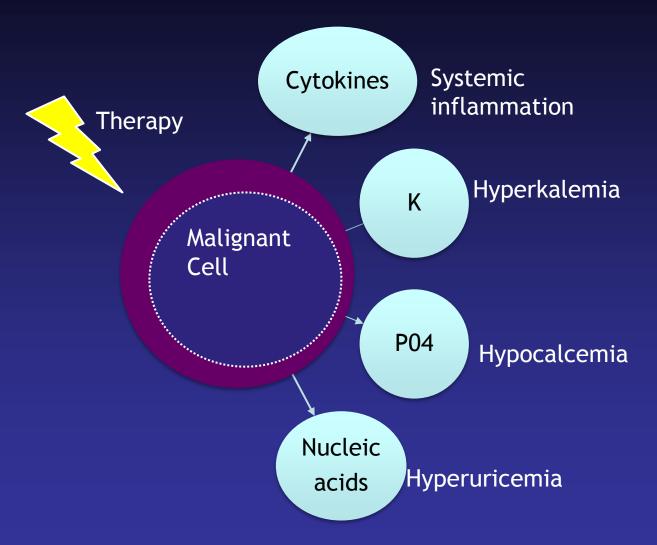
	Early	Late
Anti-emesis	+++	+
TLS	+++	-
Antimicrobials & Vaccinations	++	++
GCSF	+	-
Blood Transfusion	++	+
VTE	+	+
Psycho-social	+++	+++
Tobacco d/c	++	++

Successful Supportive Care in Hematoligical Malignancy

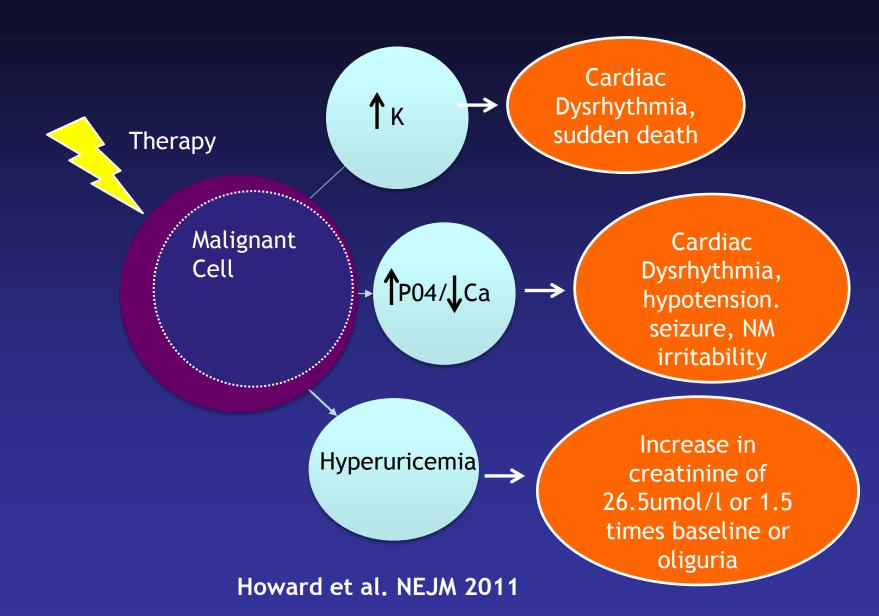
		Early	Late
	Anti-emesis	+++	+
>	TLS	+++	-
	Antimicrobials/ Vaccinations	++	++
\longrightarrow	GCSF	++	-
	Blood Transfusion	++	+
	VTE	+	+
	Psycho-social	+++	+++
	Tobacco d/c	++	++

Successful Supportive Care in Hematoligical Malignancy

	Early	Late
Anti-emesis	+++	+
TLS	+++	-
Antimicrobials/ Vaccinations	++	++
GCSF	++	-
Blood Transfusion	++	+
VTE	+	+
Psycho-social	+++	+++
Tobacco d/c	++	++


Objectives:

- 1. Describe the pathophysiology of TLS
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology


Objectives:

- 1. Describe the pathophysiology of TLS
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology

Pathophysiology of TLS

Clinical TLS

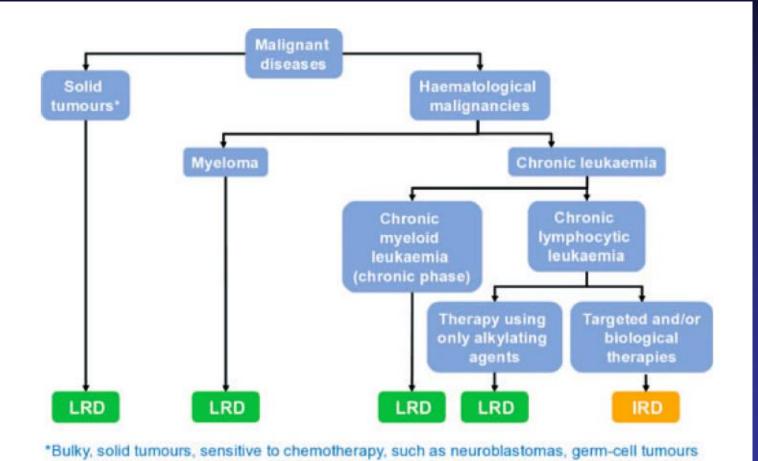
Clinical TLS ~1-5% of IR pts >5% HR pts. 15% attributable mortality ...y CITITITA, sudden death Therapy Malignant Cardiac Cell Dysrhythmia, **1**P04/**1**Ca hypotension. seizure, NM irritability Increase in Hyperuricemia creatinine of 26.5umol/l or 1.5 times baseline or oliguria Howard et al. NEJM 2011

Laboratory TLS

Cairo-Bishop criteria				
	25% change or out of normal range for >2 values within 3d before or 7ds after Rx			
Uric acid	>476umol or 25% increase from baseline			
K	>6 or 25% increase from baseline			
P04	>1.45 or 25% increase from baseline			
Ca	<1.45 or 25% decrease from baseline			

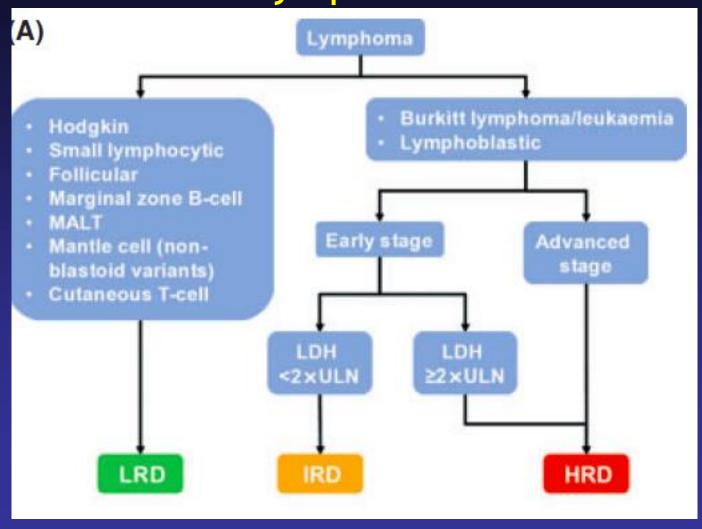
Cairo et al BJH 2004; Howard et al NEJM 2011

Objectives:

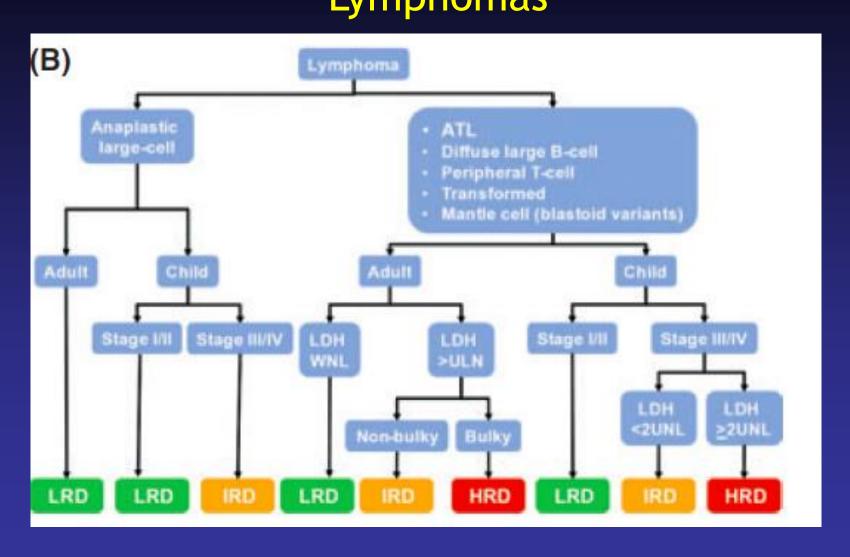

- 1. Describe the pathophysiology of TLS
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology

Risk Factors for TLS

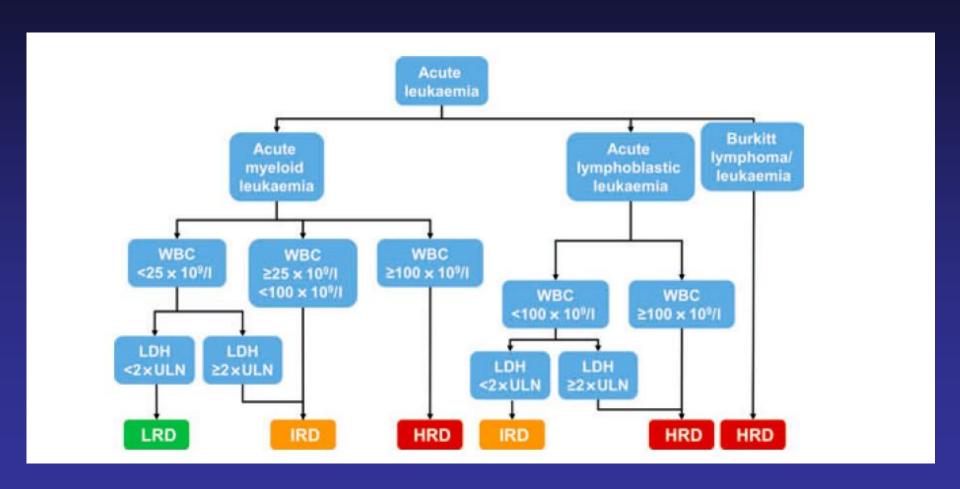
Risk Factor	Example
Tumor Burden	Lymph Nodes WBC Organ infiltration BM involvement
Cell Lysis Potential	Sensitivity to chemo (hem) Chemo intensity (hem) LDH
Other features on Presentation	Impaired Renal function/age Dehydration Other nephrotoxins Hypotension
Supportive Care	Hydration Exogenous K or Ca Thiazides; ASA; Caffeine; Vit C; Alcohol; Cisplatin Allopurinol/rasburicase


Howard et al. NEJM 2011

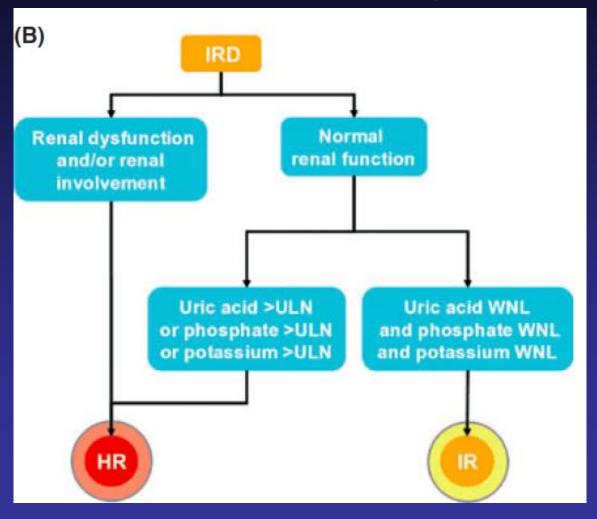
Risk Factors for TLS Solid tumours and "indolent" HM


and small-cell lung cancer are IRD.

Risk Factors for TLS Lymphomas


Cairo et al BJH 2010

Risk Factors for TLS Lymphomas


Proposals for definition of MRD terms in ALL. Data from Brüggemann et al16 with permission

Risk Factors for TLS Acute Leukemias

Proposals for definition of MRD terms in ALL. Data from Brüggemann et al16 with permission.

Risk Factors for TLS: The role of renal impairment

Cairo et al BJH 2010

Objectives:

- Describe the pathophysiology of tumour lysis syndrome (TLS)
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology

DISINTEGRATION OF CELLULAR NUCLEI WITH RELEASE OF NUCLEIC ACIDS EXCESS PURINE CATABOLISM (Adenosine and guanine) HYPOXANTHINE (more soluble than uric acid) Crystallize at high pH Xanthine Oxidase So avoid alkalization of urine Sites of action XANTHINE (more soluble than uric acid) oxipurinol (the active metabolite of allopurinol Xanthine Oxidase pH~5·6 URIC ACID URATE (insoluble) pH~7.3 Site of action of Urate Oxidase (absent in humans) Rasburicase_

ALLANTOIN (Much more soluble than uric acid)

Uric Acid & TLS

Jones et al BJH 2015

TLS prophylaxis: Risk-based

TLS Risk					
	Low	Intermediate	High		
Monitoring	Υ	Υ	Υ		
Hydration	N	Υ	Υ		
Allopurinol	+/-	Υ	Υ		
Rasburicase	N	+/-	Υ		

Clinical TLS treatment

Intravenous fluids 3l/m²/day

Rasburicase 7.5mg x 1, then allopurinol

Frequent ECGs

Laboratory tests q4-6 hrs

+/- Cardiac monitoring/ICU

+/- Hemodialysis

Chemistry tube on ice

l TLS treatment

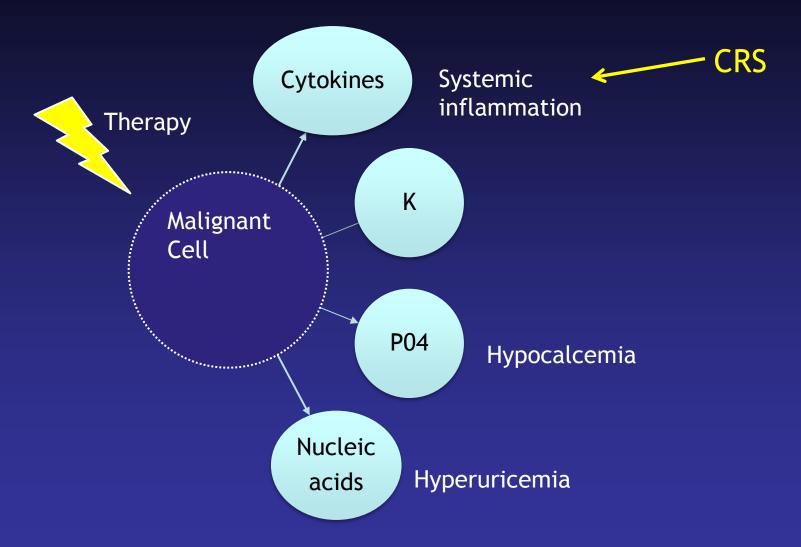
Caution in G6PD def

enous fluids 3l/m²/day

Rasburicase 7.5mg x 1, then allopurinol

Frequent ECGs

Laboratory tests q4-6 hrs


+/- Cardiac monitoring/ICU

+/- Hemodialysis

Objectives:

- Describe the pathophysiology of tumour lysis syndrome (TLS)
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology

Pathophysiology of TLS

Cytokine Release Syndrome

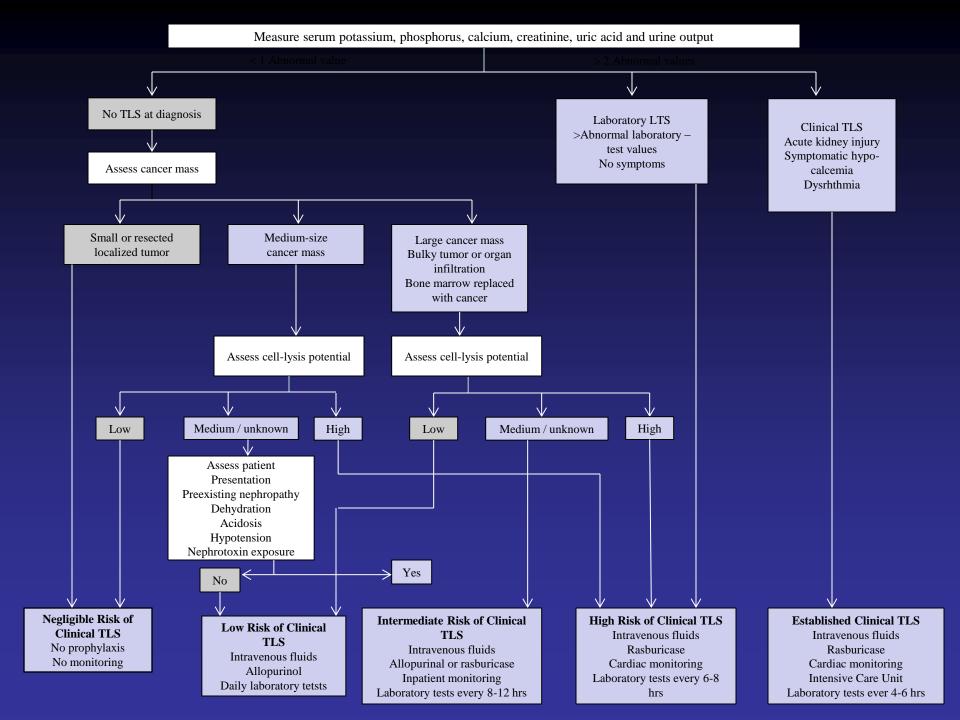
Activated lymphocytes and/or myeloid cells release inflammatory cytokines (eg IL-6)

General	Fever, malaise, fatigue, anorexia, myalgias, arthralgias, nausea, vomiting, headache
Skin	Rash
GI	Nausea, vomiting, diarrhea
CVS	Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), diminished cardiac output (late)
Coagulation	Elevated D-dimer, hypofibrinogenemia \pm bleeding
Renal	Azotemia
Hepatic	Transaminitis, hyperbilirubinemia

Cytokine Release Syndrome

Activated lymphocytes and/or myeloid cells reference inflammatory cytokines (eg IL-6) Therapy:

-	Genera	sup	portive	care
			P 0 0	


		_	- 1	•	_	_	4		_	•	1 _
_		റ	rt	16	<u>'</u>	C	T-C	٦r		10	IC
_	L	v	ı	ľ	·	,		- 1	U	ľ	2

General	Fever, malaise, fatigue, anorexia, n +/-Tocilizumab vomiting, headache
Skin	Rash
GI	Nausea, vomiting, diarrhea
CVS	Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), diminished cardiac output (late)
Coagulation	Elevated D-dimer, hypofibrinogenemia \pm bleeding
Renal	Azotemia
Hepatic	Transaminitis, hyperbilirubinemia

Objectives:

- Describe the pathophysiology of tumour lysis syndrome (TLS)
- 2. Summarize risk factors and clinical consequences of TLS
- 3. Provide an approach to prevention and management of TLS
- 4. Differentiate TLS from other metabolic emergencies in oncology

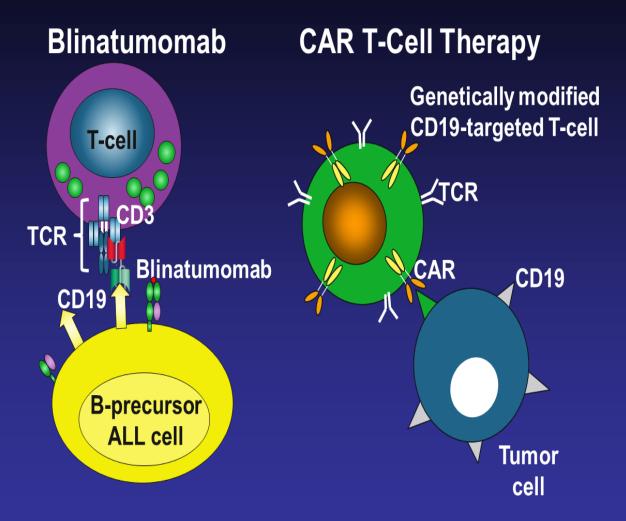
Extra slides

Criteria for rasburicase in MB

ALL	Clinical TLS ORInitial WBC> 100Lymphomatous presentation and high tumor burden
AML	Clinical TLS, OR • Initial WBC>50
"Very Aggressive" Histology (BL or Lymphoblastic Lymphoma)	Clinical TLS • Stage III /IV disease, OR • Any stage disease with LDH > than 2x ULN and uric acid > 476 umol/L
Germ Cell Tumour	Clinical TLS, OR • Stage III/IV disease and LDH greater than 2 times ULN and Uric acid > to 476 umol/L

sification	Cairo-Bishop criteria [11]	Howard criteria [12]	Key difference in Howard criteria
ory TLS	25% change or level above or below defined values for any 2 or more serum values defined below within 3 days before or 7 days after initiation of therapy	Two or more metabolic abnormalities must be present during the same 24-hour period within 3 days before to 7 days after initiation of therapy	Removed 25% change and added that both abnormalities be present in 24-hour period
cid	≥476 µmol/L or 25% increase from baseline	≥475.8 µmol/L (adults) or above ULN range for age (children)	Lowered threshold value and removed 25% increase from baseline
ium	≥6.0 mmol/L or 25% increase from baseline	≥6.0 mmol/L	Removed 25% increase from baseline
horous	≥2.1 mmol/L (children), ≥1.45 mmol/L (adults), or 25% increase from baseline	≥2.1 mmol/L (children), ≥1.5 mmol/L (adults)	Raised threshold value for adults and removed 25% increase from baseline
m	≤1.75 mmol/L or 25% decrease from baseline	<1.75 mmol/L corrected calcium or <0.3 mmol/L ionized calcium	Amended values with distinction between corrected and ionized calcium

Clinical TLS


Cardiac dysrhythmia or sudden death probably or definitely caused by hyperkalemia

Cardiac dysrhythmia, sudden death, seizure, neuromuscular irritability (tetany, paresthesias, muscle twitching, carpopedal spasm, Trousseau's sign, Chvostek's sign, laryngospasm, or bronchospasm), hypotension, or heart failure probably or definitely caused by hypocalcemia

Increase in the serum creatinine level of 0.3 mg/dl (26.5 µmol/liter) (or a single value >1.5 times the upper limit of the ageappropriate normal range if no baseline creatinine measurement is available) or the presence of oliguria, defined as an average urine output of <0.5 ml/kg/hr for 6 hr

Howard et al. NEJM 2011

Immunotherapy Targets in ALL/NHL

