Checkpoint Inhibition: The New Cancer Treatment Revolution

Joel Gingerich, MD, FRCPC Medical Oncologist Medical Director, Community Oncology Program Associate Program Medical Director, WRHA Oncology Program CancerCare Manitoba Assistant Professor University of Manitoba

Presenter Disclosure

- Faculty: Joel Gingerich
- Relationships with commercial interests: N/A

Mitigating Potential Bias

• N/A

Learning Objectives

- Identify the role of immune checkpoint inhibition in cancer treatment
- Describe how checkpoint inhibition works
- Recognize the unique toxicities associated with immune checkpoint inhibition and how to treat them

Promising New Cancer Treatment Uses Immune Cells –TIME 11/2014

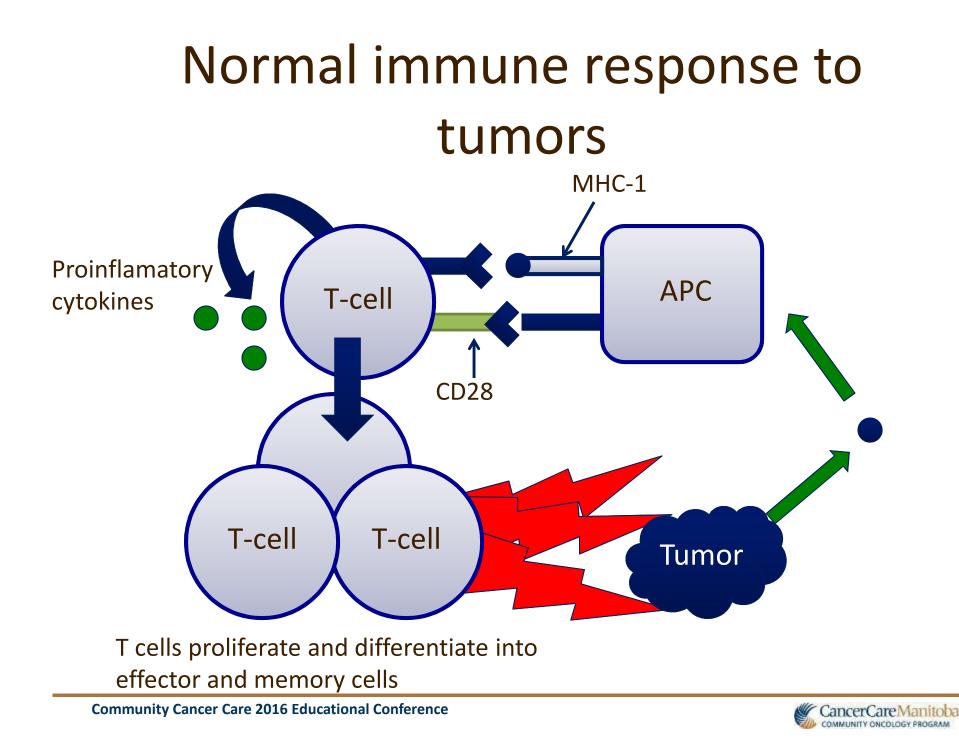
> "This is it" the cancer treatment that has doctors talking about a cure – globalnews.ca 3/2016

Harnessing the Immune System to Fight Cancer – New York Times 7/2016

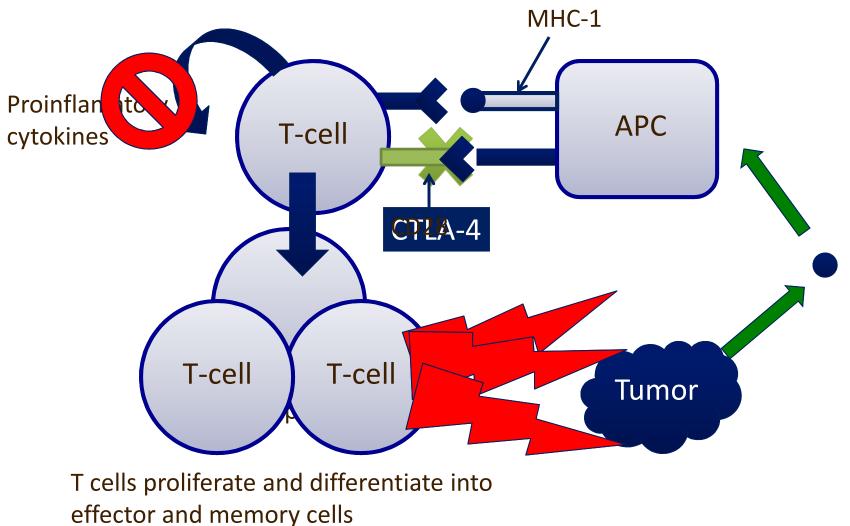
Community Cancer Care 2016 Educational Conference

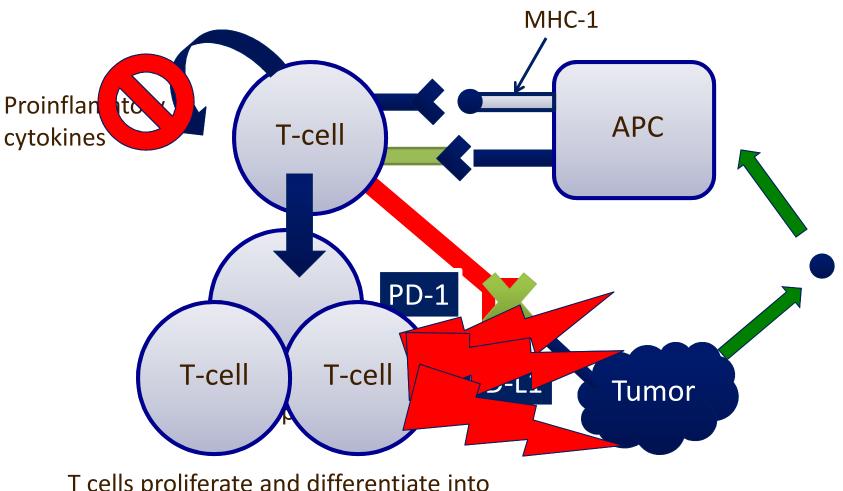
Background

- The role of immunotherapy in cancer treatment is not new:
 - 1st described 100+ years ago
 - Used in metastatic melenoma/renal cell carcinoma for many years (IL-2, IFN-α)
- Limited by toxicity and limited benefit



Advantages of immunotherapy


- Develops long-term immune memory
 - The effects last much longer than the actual tx
 - Chance for long term control/ cure
- Utilizes the bodies own immune system
 - Resistant to cancer mutations


Immune checkpoints ("breaks"): CTLA-4

Community Cancer Care 2016 Educational Conference

Immune checkpoints: Programed death-1 (PD-1)

T cells proliferate and differentiate into effector and memory cells

Immune checkpoint inhibitors: (+) Phase III randomized clinical trials

Cancer	Drug	Mechanism	Line	OS Δ
Melanoma	ipilimumab	CTLA-4	1 st line	2.1 mo
	ipilimumab	CTLA-4	2 nd line	3.6 mo
	Nivolumab	PD-1	1 st line	↑ 30.8% (1 year)
	Pembrolizumab*	PD-1	1 st or 2 nd line	↑ 15.9% (1 year)
Lung cancer	Nivolumab	PD-1	2 nd line	2.8 mo
	Nivolumab	PD-1	2 nd line	3.2 mo
	Pembrolizumab	PD-1	2 nd line	4.2 mo
RCC	Nivolumab	PD-1	2 nd line	5.4 mo

Some pts may be line term survivors: i.e. 20% of met. melanoma pts alive at 5 years

Promising results from clinical trials

• Melanoma:

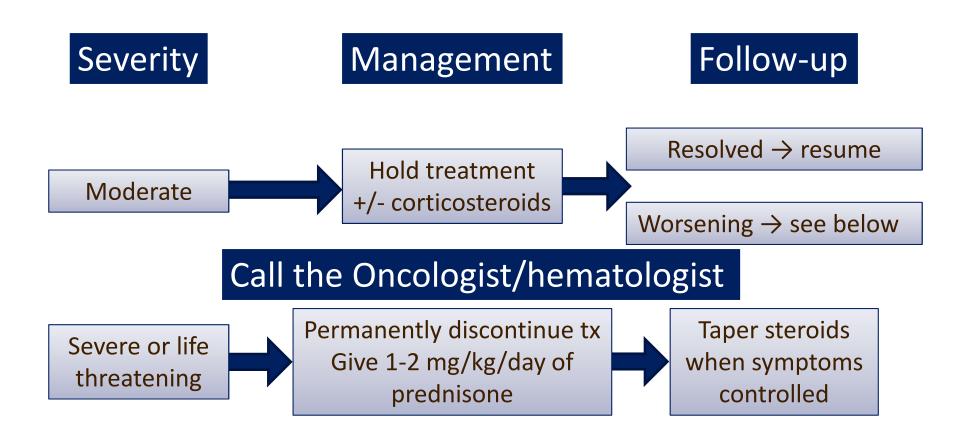
- Adjuvant therapy (i.e. after surgery)
- Combination therapy (Nivolumab/ipilimumab)
- Bladder cancer
- Prostate cancer
- Pancreatic cancer
- Head and neck cancer
- Breast cancer
- Hematologic malignancies

Cost

- \$8,200/ month
- Pembrolizumab currently funded for treatment in Manitoba
- Others will be soon

Adverse events associated with immune-checkpoint inhibitors

Immune-mediated adverse reactions				
Rash (50%): pruritis, vitiligo	Diarrhea/colitis (35%)			
Pneumonitis (5%)	Hepatotoxicity (5%)			
Endocrinopathies (6%): hypophysitis, thyroid, adrenal insufficiency	Neurologic (rare): Guillain-Barre, aseptic meningitis, encephalopathy, myasthenia			


Toxicities: CTLA-4 > PD-1

Can be life threatening if not managed correctly

Death due to treatment (1%)

How to manage toxicity

http://www.accessdata.fda.gov/drugsatfda_docs/rems/Yervoy_2012-02-16_Full.pdf

Immune checkpoint inhibitor conclusions

- Rapidly changing the landscape of cancer treatment
- Seem to have benefits in many types of cancers
 - May improve long term outcome in a subset of pts
- Have unique immune related toxicities
 - Can be life threatening if not identified and treated properly

Selected bibliography

- 1. Larkin J, et al: N Engl J Med 2015; 373:23-34
- 2. Robert C, et al: N Engl J Med 2015; 372:2521-2532
- 3. Eggermont AMM, et al: Lancet Oncol 2015; 16: 522–30
- 4. Weber JS, et al: Lancet Oncol 2015; 16: 375–84
- 5. Maio M, et al: Clin Oncol 2015. 33:1191-1196
- 6. Robert C, et al: N Engl J Med 2011;364:2517-26.
- 7. Hodi FS, et al: N Engl J Med 2010;363:711-23
- 8. Borghaei E, et al: N Engl J Med 2015;373:1627-39
- 9. Motzer RJ, et al: N Engl J Med 2015;373:1803-13
- 10. Brahmer J, et al: N Engl J Med 2015; 373:123-135
- 11. Robert C, et al: N Engl J Med 2015; 372:320-330
- 12. Ribas A ,e tal: Lancet Oncol. 2015;16(8):908
- 13. Cousin S, Italiano A. Clin Cancer Res. 2016; 22(18):4550-5
- 14. Pennock GK, Chow LQM. The Oncologist. 2015;20:812-822
- 15. Robert C, et al: N Engl J Med. 2015 Jun 25;372(26):2521-32

