Myelodysplasia and Myelofibrosis

UPCON 26 Mar 2015
Donald S. Houston
Disclosures

- No shares
- No grants
- No speaking fees
- No advisory boards
- No dinners
- No soliciting
Outline

- An illustrative case
- What is myelodysplastic syndrome?
- Patient’s perspective: MDS as failure of bone marrow function
- Scientific perspective: MDS as a malignant disorder
- Prognosis
- Management
Case 1

- 72 y.o. man referred for evaluation of anemia
- WBC 2.9, Hgb 61, MCV 120, platelets 112
- Bone marrow biopsy:
 - Increased cellularity, megaloblastoid dyserythropoiesis, dysplasia in granulocytic and megakaryocytic series
 - Blasts 2%
 - Cytogenetics: 46,XY
- Diagnosis: Refractory anemia with multilineage dysplasia
- ‘Low-intermediate’ risk by IPSS score
Case 1

- No response to erythropoietin injections. Commenced on red cell transfusions.
- Developed progressive neutropenia and thrombocytopenia
- Over next 2 years received
 - 75 units PRBCs
 - 165 units platelets
- Continued to work full time as a janitor
Case 1

- 19 months after diagnosis, retired from his janitorial work
- At 20 months after diagnosis, was admitted to palliative care unit with *Staph. aureus* bacteremia, but recovered with antibiotics
- At 26 months, presented with headache, vomiting, and became obtunded. CT scan showed massive intracranial hemorrhage.
- Donated his body to medical science
Case 2

- 49 y.o. woman referred for evaluation of pancytopenia
- WBC 4.1, Hb 54, MCV 101.2, plts 64
- Bone marrow
 - Hypercellular with dysplasia of erythroid, granulocytic, and megakaryocytic lineages
 - 3.8% blasts
 - Karyotype 46,XX
Case 2

- Commenced on red cell transfusions
- Blood counts fell progressively; after 5 months:
 - ANC 0.4
 - platelets 15
- Started on erythropoietin + G-CSF
 - Platelets rose to 28 but petechiae worse
 - WBC 145
- epo/G-CSF discontinued
Case 2

- Considered for allogeneic stem cell transplant. Matched unrelated donor identified
- Transplant scheduled but delayed because donor exposed to infectious mononucleosis
- 10 months after Dx, while awaiting transplant, transformed abruptly to secondary AML
- Induction chemotherapy (×2 cycles) failed to induce remission
Case 3

- 79 y.o. woman noted to be pancytopenic on routine physical
 - WBC 1.93, ANC 0.57, Hb 113, MCV 105, and platelets 92
- Bone marrow
 - Decreased cellularity
 - No overt dysplasia of erythroid or myeloid lineages
 - 24.8% blasts
 - Cytogenetics normal
Response to azacitidine
Case 3

- Tolerated azacitidine well with only some constipation; continued very active lifestyle
- After 4 cycles of azacitidine, blood counts essentially normal and bone marrow showed complete remission
- Received total of 27 cycles of azacitidine but then developed progressive cytopenias
- Bone marrow showed relapse with 44% blasts
- Continues on supportive care
Questions

- Why did these patients have different courses?
 - what is the biology of myelodysplastic syndrome?
- Could we have predicted their outcomes
 - what are the prognostic factors and how is MDS classified?
- Could we have done better in their treatment?
 - what are the management options in MDS?
 - what does the future hold?
It’s all Greek to me

Myelodysplasia

“myelo” = marrow
“dys” = bad
“plasia” = appearance

Hence ‘bad-looking bone marrow’
Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic progenitor cells characterized by impairment of effective hematopoiesis and by propensity to evolve to acute myeloid leukemia.
The Two Faces of MDS

- Bone marrow failure
- Pre-leukemia
MDS as bone marrow failure
Hematopoiesis

- Peripheral blood cells cannot divide and have limited life span
 - Red cells 100 days
 - Platelets 7 days
 - Neutrophils 6 hours
- Marrow must produce about 200 billion of each cell type each day to replace those that wear out
Hematopoiesis

Bone marrow

- CFU-GEMM
- BFU-E
- CFU-E
- CFU-Meg
- CFU-M
- CFU-GM
- CFU-Eo
- CFU-baso
- Lymphoid stem cell

Blood

- Red Cell
- Platelet
- Monocyte
- Eosinophil
- Basophil
- Neutrophil
- B-cell
- T-cell

Stem cell
Blood Count Thresholds

- **ANEMIA**
 - Symptoms typically become significant when Hb in 80s (regardless of sex)

- **NEUTROPENIA**
 - Concern of bacterial and fungal infection especially if ANC < 0.5 x 10⁹/L

- **THROMBOCYTOPENIA**
 - Risk of bleeding usually minimal unless platelets < 20-30 x 10⁹/L
 - >50 considered OK for minor surgery or anticoagulation, >80 for major surgery
Bone Marrow Failure in MDS

- All patients have cytopenias of one or more cell lines (red cells, white cells or platelets)
 - Anemia is usually the most prominent
- Low counts tend to get lower over time, but sometimes only over many years
- Improvement (without therapy) means the diagnosis was wrong or presages leukemia
Anemia Features

● Symptoms
 ▪ Exertional symptoms most sensitive
 ▪ Muscle fatigue, shortness of breath, pounding heart
 ▪ Orthostatic lightheadedness
 ▪ General tiredness (?)
 ▪ Ability to tolerate anemia is influenced by heart problems, lung disease, age, and how fast the hemoglobin level fell

● Findings
 ▪ Pulmonic flow murmur due to decreased blood viscosity, widened pulse pressure, lower BP
Neutropenia

- **Symptoms**
 - Mouth sores
 - Oropharyngeal and cutaneous infections
 - Susceptibility to infections (including abrupt and overwhelming blood stream infections)
Thrombocytopenia

● Symptoms
 ▪ Bruising
 ▪ Nose bleeds, gum bleeding, excessive menstrual bleeding

● Findings
 ▪ Petechiae, echymoses
 ▪ Mucosal purpura portends high risk of bleeding
Other symptoms

Some patients experience:

- Weight loss
- Fatigue that is unrelated to hemoglobin
- Fevers
- Night Sweats
- Splenomegaly
Management of low blood counts

- Transfusion
 - Red cells – typically every two to four weeks if production has failed completely
 - Transfusion is given depending on symptoms
 - Usually if Hgb less than 70-80g/L – but if marrow has failed, no point in waiting until symptoms are severe
 - Leads eventually to iron overload
 - Platelets – only if very low or if bleeding occurs
 - Transfusion generally used if less than 10
 - High risk of alloimmunization with repeated transfusion
 - White cells – can’t transfuse
Iron overload

- Each unit of blood transfused contains ~250mg of iron
- Toxicity begins to occur with ~10g excess body iron burden
 - Liver
 - Heart
 - Endocrine (pituitary, pancreas)
- Only low-risk transfusion-dependent patients likely to live long enough; no evidence to guide which patients warrant chelation therapy to reduce iron
Iron overload

- Working guideline (mine)
 - Ferritin >>1000
 - Liver iron on MRI >300
 - Elevated transaminases
 - Survival still expected >2yrs
- Deferoxamine 1g o.d. or b.i.d. by slow subcut injection (10ml)
- Deferasirox 30mg/kg p.o. daily
Management of cytopenias

- Growth factors
 - Erythropoietin can reduce or eliminate transfusion dependence in a minority of MDS pts
 - Generally effective only if serum epo level is <500
 - G-CSF (filgrastim, Neupogen) is occasionally used to boost white cells and may be synergistic with epo
 - Agonists of thrombopoietin receptor have been developed and are used in ITP (eltrombopag and romiplostim)
 - Use in MDS associated with rise in blast counts
Management of cytopenias

- Modify the underlying disease
 - Azacitidine
 - Lenalidomide
 - Bone marrow transplant
MDS as pre-leukemia
Mutations in MDS

- MDS is a clonal process
- Genome sequencing approaches show that about 5 mutations are present
- Some of these proteins regulate key events:
 - Proliferation (cell division)
 - Differentiation (development of mature cell with specific characteristics of the tissue)
 - Survival (prevention of apoptosis)
Clonal Evolution: MDS and AML
MDS mutations

- Recurring chromosomal alterations (e.g. trisomy 8, monosomy 7, del 5q)
- Single gene mutations including TET, IDH1, DNMT3a (all implicated in DNA methylation), RUNX1, N-ras, K-ras and p53
- Mutation profile overlaps AML but distinct genetic patterns
Genes in MDS

Xu et al., PNAS 2014; 111: 8589-8594
Altered Genes in Myelodysplasia

Ok et al., Leuk Res 2015;39:348-54
Who gets MDS?

- Risk strongly increases with age
- Risk is increased by exposures that can cause damage to DNA
 - Cancer chemotherapy, esp. alkylating/cross-linking agents
 - Radiation
 - Smoking
Two Faces of MDS

- Chronic hematopoietic failure
- Pre-leukemia

- Cases of MDS are heterogeneous, with different degrees of hematopoietic failure, and varying risk of progression to leukemia
- Because we can mostly manage the low counts (transfusion), the length of survival is determined largely by the risk of AML
A Spectrum

- MDS is viewed as a spectrum of disorders
- ‘low-risk’
 - milder cytopenias
 - little likelihood of leukemia
 - longer survival
- ‘high-risk’
 - more severe cytopenias, esp. neutropenia
 - high propensity to AML
 - shorter survival
The Spectrum of MDS

Refractory Anemia
Refractory Anemia with Ring Sideroblasts
Refractory Anemia with Multilineage Dysplasia
Refractory Anemia with Excess Blasts - 1
Refractory Anemia with Excess Blasts - 2
5q-syndrome
CMML-1
CMML-2
Determinants of risk

- Several risk score systems used
 - WHO, IPSS, R-IPSS
- Testing of the bone marrow is key to assessing risk
 - Blast count (number of immature cells)
 - If blasts >20% = AML
 - Chromosome analysis
 - Number of cytopenias
 - Need for transfusions
- Age also impacts survival
Greenberg et al., *Blood* 1997;89:2079
IPSS

<table>
<thead>
<tr>
<th>Points</th>
<th>Blasts (%)</th>
<th>Karyotype</th>
<th># cytopenias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><5</td>
<td>Good</td>
<td>0 – 1</td>
</tr>
<tr>
<td>0.5</td>
<td>5 - 10</td>
<td>Intermediate</td>
<td>2 – 3</td>
</tr>
<tr>
<td>1.0</td>
<td>–</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>11 – 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>21 – 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Category

<table>
<thead>
<tr>
<th>Score</th>
<th>Low</th>
<th>Int-1</th>
<th>Int-2</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.5 - 1.0</td>
<td>1.5 - 2.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Cases 1 & 2

<table>
<thead>
<tr>
<th>Points</th>
<th>Blasts (%)</th>
<th>Karyotype</th>
<th># cytopenias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><5</td>
<td>Good</td>
<td>0 - 1</td>
</tr>
<tr>
<td>0.5</td>
<td>5 - 10</td>
<td>Intermediate</td>
<td>2 - 3</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>11 - 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>21 - 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Category

- Low
- **Int-1**
- Int-2
- High

Score

- 0
- **0.5 - 1.0**
- 1.5 - 2.0
- 2.5
Prognosis

Survival

A

percent

years

Low 267 pts
Int-1 314 pts
Int-2 179 pts
High 56 pts
Case 3

<table>
<thead>
<tr>
<th>Points</th>
<th>Blasts (%)</th>
<th>Karyotype</th>
<th># cytopenias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><5</td>
<td>Good</td>
<td>0 – 1</td>
</tr>
<tr>
<td>0.5</td>
<td>5 - 10</td>
<td>Intermediate</td>
<td>2 – 3</td>
</tr>
<tr>
<td>1.0</td>
<td>–</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>11 – 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>21 – 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Low</th>
<th>Int-1</th>
<th>Int-2</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>0</td>
<td>0.5 - 1.0</td>
<td>1.5 - 2.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Prognosis – Case 3

Survival

![Graph showing survival rates for different groups (Low, Int-1, Int-2, High) with patient counts (267, 314, 179, 56) for each group.](image)
Risk-based management

- Low risk: Supportive care
 - Transfusions
 - Growth factors (erythropoietin +/- G-CSF)
 - Treatment of infections

- High risk: treatment like malignancy
 - Azacitidine
 - Lenalidomide
 - Bone marrow transplant
Azacitidine

- Inhibits DNA methylation
 - Presumed that some anti-oncogenes are silenced by aberrant methylation

- Approved for/proven benefit for survival in
 - Int-2 and high-risk MDS (per IPSS score)
 - CMML-2 with WBC < 13
 - AML with <30% blasts

- Median survival prolonged by 9mo compared to standard care
 - Benefit similar across all subgroups
Azacitidine: survival

Limitations of Azacitidine

- Cytopenias get worse initially
 - Often severe neutropenia
 - Infection risk surprisingly low
- Response takes up to 4 cycles (or longer)
 - Median 3 cycles
- Have to keep going as long as response persists
- Generally well tolerated but some side effects (constipation, injection site rxn)
- Unstable so must be administered immediately after pharmacist prepares it
Lenalidomide

- Specific benefit in rare MDS subtype (5q-syndrome)
 - Good prognosis anyway
 - Eliminates transfusion-dependence in most
 - Expensive
Bone marrow transplant

- Allogeneic BMT is only curative option in MDS

- Candidates
 - High-risk
 - Young
 - Fit
 - …rare
Summary

- MDS is a disease with two faces
- Shares much of the biology with AML, and survival strongly correlated with risk of evolution to AML
- Presentation is primarily with anemia, and anemia and need for transfusion dominate the burden of disease, while death is most commonly due to neutropenia or thrombocytopenia
- Both supportive care and chemotherapy are important in management, tailored to patients presentation and features
Questions?

houston@cc.umanitoba.ca